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Abstract

The linear solvent strength (LSS) theory of gradient elution is useful in the optimization of separations in
high-performance liquid chromatography. While the fundamental parameters of this theory are defined in terms of
isocratic behavior, gradient operation has been used previously to estimate those parameters to allow rapid
optimization of the separation. In this study, various methods of extracting the LSS parameters from gradient
retention data were examined. Sets of synthetic retention data were calculated directly from the equations of the
LSS theory. When realistic experimental uncertainties were incorporated into these data sets, the LSS parameters
used to generate the synthetic data were not recovered accurately unless special precautions were taken. For large
molecules, an approximate LSS expression could be used to determine the solvent strength parameter with an error
of less than 13%, which is comparable to or better than those for the other methods evaluated.
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1. Introduction

The semi-empirical linear solvent strength
(LSS) theory of gradient elution is useful in the
design and optimization of separations. LSS
theory is fully developed elsewhere [1-4] and its
success in predicting gradient and isocratic elu-
tion behavior has been amply demonstrated (e.g.,
[2,5,6]). According to LSS theory, the gradient

retention time of a solute, Lys is
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where ¢t is the gradient duration time, A® is the
fractional change in solvent composition, t,, is
the column void time and ¢, is the delay time
between the chromatographic injection and the
time when the gradient reaches the head of the
column, due to the finite volume between the
injector and the gradient mixer. S, the solvent
strength parameter, is the slope of the plot of the
logarithm of the capacity factor versus the vol-
ume fraction of organic modifier in the mobile
phase and k, is the capacity factor in the initial
mobile phase composition of the gradient. The
parameters § and k, are characteristic of a
particular  solute—solvent-stationary = phase
combination; the other parameters on the right-
hand side of Eq. 1 are directly controlled by the
experimenter.
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Refinements to Eq. 1 have been made to
incorporate exclusion effects [7] and non-ideal
instrument behavior [8]. However, these refine-
ments have no effect on the discussion that
follows.

Since the LSS parameters S and k&, are defined
in terms of isocratic behavior, the preferred
method of determination is to perform the iso-
cratic measurements. However, for large mole-
cules, the extreme sensitivity of retention to
mobile phase composition (e.g., [7,9]) and the
length of the retention time render the applica-
tion of the isocratic method difficult, and an
iterative method using gradient elution has been
applied [7]. In this method, two gradient runs of
different s are performed, and the resultant 1,8
and corresponding ;s are substituted into a
modified form of Eq. 1, generating two non-
linear equations in the two unknowns, S and k.
Iterative solution yields values for the LSS pa-
rameters. A similar procedure in this study will
be referred to as the pairwise gradient determi-
nation method. This type of method, although
practical for optimization [6-8], is statistically
unsatisfactory for accurate determination of the
LSS parameters since the procedure propagates
all of the experimental uncertainties directly into
the calculated parameters. Thus, experimental S
values so determined will be unsuitable for
comparison with § values calculated from an a
priori theory of gradient elution.

The statistically preferable alternative is to
perform a regression fit of Eq. 1 to a set of
experimental data, adjusting the values of S and
k; to give the best fit to the entire data set.
Lundell [10] has shown that such an approach
can be used to optimize the gradient separation
of peptides fairly successfully, where success is
judged by the agreement between the calculated
and experimentally observed .

These studies were focused on the use of LSS
theory to optimize the gradient separation of a
mixture and amply demonstrated the utility of
the LSS theory in that application. Thus, any
successful a priori theory of gradient elution
must be able to predict the parameters of the
LSS theory. Consequently accurate determina-
tion of the LSS parameters becomes an impor-

tant issue. Here we concern ourselves with the
determination of these parameters. In other
words, the following discussion addresses the
ability of a researcher to extract the true S and
k; from experimental data.

Synthetic gradient retention times (t,s) were
calculated using Eq. 1 and realistic values of S, k,
and the necessary experimental parameters.
Appropriate amounts of noise (errors) were
added to the gradient retention times in some of
the synthetic data sets, which allowed us to
evaluate the parameter extraction methods in a
realistic manner. The abilities of the pairwise
gradient determination and of two non-linear
regression algorithms to extract the true S and k,
values from the synthetic gradient data were
evaluated.

Except for the unrealistic case of noise-free
data, the pairwise gradient method was unreli-
able, as the extracted parameters varied signifi-
cantly with the choice of specific ¢ pairs. The
tested non-linear regression techniques were
more reliable for data incorporating realistic
noise. In the case of large-molecule data, typical
fitting criteria (e.g., a relative change in reduced
x° of less than 0.01) did not reliably recover the
original S and k, values that were used to
generate the synthetic gradient data sets accord-
ing to Eq. 1. A more stringent fitting criterion (a
change in relative reduced x? of less than 0.001)
yielded acceptable results, and a grid-search
algorithm gave better results than the Marquardt
algorithm. A linear regression to a modified form
of Eq. 1 gave comparable results to non-linear
regression for large molecules.

2. Procedure
2.1. Synthetic data sets

Eq. 1 was used to generate synthetic gradient
data used in all fitting procedures. Three pairs of
values for S and k, were used, corresponding to
small, moderate and large molecules: § =34,
ky=4.0; S=14.3, k,=646; and S =225, k,=
75 858. These values were taken directly from the
literature or calculated from published data
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{Refs. [2], [7] and [7], respectively, for the small
(benzene), moderate (M, 2000 polystyrene) and
large (M, 9000 polystyrene) molecule parame-
ters}. The other “‘experimental” parameters used
were AP =030, t, =0 min (i.e., no delay time)
and ¢, =2.20 min.

The omission of size-exclusion and non-ideal
instrumental effects makes this simulation a
“best-case” situation. Analysis of real data incor-
porating these effects will be more seriously in
error than is shown here.

For each particular § and kg pair, ¢, values
were calculated for ten t5s (15-150 min at 15-
min intervals) using Eq. 1. A single set of ten ¢,s
was calculated and used as the noise-free data
group.

Three hundred such sets of ten #,s each were
generated for each S and k; pair at each of two
noise levels (0.1% and 1%). These will be
referred to as the 0.1% and 1% noise groups,
respectively. Normally distributed random
(NDR) noise was added to the individual gra-
dient retention times by means of the algorithm
of Rubinstein [11]. The noise generator was
randomly seeded so that the noise in each set of
gradient data was independent of the preceding
set.

In summary, the three noise-free groups corre-
spond to the experimentally impossible noise-
free data and each group consists of one set of
ten ¢, 1, data pairs. The 0.1 and 1% noise values
were chosen following the flow-rate precisions
suggested by Jandera and Churacek [12], who
indicated that 0.5% R.S.D. is a realistic flow
variation. Each of the three 0.1% noise groups
contains 300 sets of ten fg, f, data pairs and
collectively represent an exceptionally reproduc-
ible experimental system. Each of the three 1%
noise groups also contains 300 sets of data pairs
and collectively represent a more poorly func-
tioning gradient system.

2.2. Approximate LSS retention equation

Although Eq. 1 is the fundamental retention
relationship in LSS theory, for cases where S and
kg are large, ¢, is, to a good approximation, given
by

tg (2.3035 A«Dth(;) o
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(This approximation has been used frequently
(1,13].) Eq. 2 can be rearranged to give

1 1
y=35Inl+5In(Sky)+ T 3)

where y=2303A¢,/t; and I'=2.303APt, /5.
Further manipulation yields

1 1 ,
y=I'=<In I +5In(Sk)) (4)

which yields 1/§ as the slope of the linear fit of
y— I versus In I

2.3. Parameter extraction

Previously, LSS parameters have been ex-
tracted from genuine experimental gradient data
by an iterative numerical technique [2,7,13]. In
our study, iterative calculation of S and k, for
the pairwise gradient determination method was
performed by the Newton—Raphson method. An
initial estimate of S was required. When, for a
particular data pair, the method failed to con-
verge within 500 iterations, that pair of data were
not included in error calculations.

Non-linear regression fitting to Egs. 1 and 3
was performed using the grid-search (GRIDLS)
and Marquardt (CURFIT) algorithms using pro-
grams given by Bevington [14]. In both cases,
initial estimates of S and k, were also required.
The search was stopped when the goodness-of-fit
criterion was met. The goodness-of-fit estimator
was the relative change in reduced x°, i.e.,

X (previous iteration) — y’(new iteration)

x_(previous iteration)

where
10 2
2 Zi=1 [t — tg,(flt)]
X~ 8
or

s S Iy = w(EOP
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where the 8 in the denominator is the number of
degrees of freedom.

Linear regression fitting to Eq. 4 was per-
formed using standard programs given by
Bevington [14].

2.4. Residual surfaces

Residual surfaces (error contours) were calcu-
lated by varying both S and k, from about 30%
of the true value to about 200% of the true
value. The residual, R, is the reduced sum of the
square of the differences between these calcu-
lated 1,8 and the 1,8 for the noise-free data set,
i.e., after Eq. 1, with ¢, =0,

R=

10
2
21':1 [tgi(tG,-’ Strue’ k(’),true) - tg‘-(tG,»’ Strial’ k{;,tria])]
8

where X . refers to the true LSS parameter
value used to generate the data, X, refers to
the abscissa or ordinate values in Fig. 1a or b and
the summation is made for each of the ten ¢
values used to generate the data.

All programs were written in Microsoft FOR-
TRAN 5.0 (Microsoft, Redmond, WA, USA) and
run on a Ulta 486 computer (Ulta Computers,
Weirton, WV, USA). Plotting was performed
using the Axum graphics package (TriMetrix,
Seattle, WA, USA).

3. Results and discussion

In the following, results from each single-set,
noise-free group are reported as percentage
error. Results from each 300-set 0.1% or 1%
noise group are reported as the average per-
centage error plus or minus the standard devia-
tion of the percentage error. This corresponds to
a ca. 70% confidence interval.

3.1. Residual surfaces

The shape of the residual surface is critical in
determining the success of any regression tech-

nique. A well defined minimum allows accurate
extraction.

For the LSS model, the shape of the residual
surface depended strongly on the magnitude of
the LSS parameters (Fig. 1). The residual surface
for the small-molecule data contained a single
minimum at the bottom of a “crater” (Fig. 1a).
For the moderate-molecule data, the residual
surface was a long, elliptically shaped valley with
steep sides and a shallow “floor” (Fig. 1b). For
large-molecule data, this elliptically shaped val-
ley became even more clongated (not shown).

Residual surfaces were generated for 5 ranging
from 1.5 to 20 and for k, ranging from 5 to 1000.
The general shapes of these surfaces were similar
to those shown and are omitted here for brevity.
In all cases, small Ss (i.e., <5) gave relatively
well defined minima, while larger Ss resulted in
elliptically shaped valleys. The ellipticity and
shallowness of the valley increased with increas-
ing S and with increasing k, (data not shown).

The implication of these differences is that
extraction of the LSS parameters from small-
molecule data will be accurate and the extracted
values will be independent of the initial estimates
used in the extraction procedure. The shallow
and long, elliptically shaped residual surfaces of
the moderate- and large-molecule data will cause
the extracted values to be strongly dependent on
the initial estimates. These difficulties in fitting
parameters on long, elliptically shaped residual
surfaces are well documented [15].

3.2. Pairwise gradient determination

For each of the three noise-free groups, every
possible combination (45 pairs) of the gradient
retention data was used in the pairwise gradient
determination of the LSS parameters. The pro-
gram converged to the correct value of S regard-
less of the initial estimate of the § value, pro-
vided that these initial estimates were larger than
the true S values. If the initial estimates were
smaller than the true S value, the program
frequently failed to converge. The program also
converged to the correct value of k, (data not
shown).

This procedure was repeated for each set of
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Fig. 1. Residual surfaces for noise-free gradient retention times as functions of § and k. Labels on the contour lines represent the
R value. (a) True § = 3.4, true k; = 4.0 (small molecule); (b) true S =14.3, true k} = 646 (moderate-size molecule).

each 0.1% noise group and again for each set of
each 1% noise group. From each data set in each
group, 45 pairs were constructed. Thus, 13 500
pairwise combinations were tested at each noise
level. A detailed presentation of these results is
not feasible. The best- and worst-case errors at
each noise level are presented in Table 1. Al-
though the average best-case errors shown (par-
ticularly for S) are fairly small, it should be
remembered that these averages represent 300
distinct trials, or 600 separate chromatographic
runs. The error ranges shown indicate that, in the
best case, a single pair of chromatographic trials
has only a 70% chance of giving extracted
parameter values within about 6% of the true
value when the noise level is 0.1%, or within
about 16% of the true value when the noise level
is 1%. Clearly, if the gradient times are not
optimally chosen, the situation is much worse.
In general, the best cases occurred when the
gradient times were different; the worst cases
occurred when they were similar. A similar
tendency in the error analysis of S values using
experimental gradient retention data was previ-

ously noted by Quarry et al. [13]. Also, regard-
less of whether the initial estimate of § was
larger or smaller than the true § value, not all
300 trials for a given pairwise combination of #5s
converged. For initial estimates of S which were
smaller than the true S value, the program rarely
converged. For all values of S and kg, the failure
to converge was more frequent as the noise in
the data increased. The worst case results im-
proved significantly as the initial estimate of S
was closer to the true value; the best case results
improved only slightly under these circum-
stances. The results were generally poorer for the
larger molecules, as found by Larmann et al. [7]
and Quarry et al. [13].

3.3. Regression analysis of noise-free data

Since the shape of the residual surfaces indi-
cated that non-linear regression for this model
would be difficult, a determination of an appro-
priate goodness-of-fit criterion was made by
evaluating the errors in the extracted parameters
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Table 1

Pairwise gradient determination of linear solvent strength parameters

Noise Best case Worst case
Parameter Level True Error torta, Error totg,
(%) value (% * o) (min) (% * o) (min)
S 0.1 34 005+7.8 15, 75 190 x 250 135,150
14.3 0.04 4.1 45,135 58*36 135,150
225 -0.06 5.5 15,120 17+76 135,150
1 34 -0.10*20 15,135 690 + 780 135,150
143 03411 15,120 2582 15, 30
225 1.93+18 15,120 13+81 30, 45
ky 0.1 4.0 0.06+2.1 15, 75 17%25 135,150
646 1.7x17 45,135 31000 + 520000 135,150
75858 14 =60 15,120 >10" = 10" 135,150
1 4.0 02251 15,135 140 * 308 135,150
646 1353 15,120 >10 = 10" 15, 30
75858 550 = 1900 15,120 >10" +10" 30, 45

A Newton-Raphson method was used, with an initial estimate of S of 100. Convergence was considered complete when the
absolute difference in S values of successive iterations was less than 0.001.

using the noise-free groups. GRIDLS and CUR-
FIT were tested using Eq. 1, setting the initial
estimates for both S and k; at 1.00 for all three S
and k pairs.

The results are shown in Table 2 and indicate
that the appropriate goodness-of-fit criterion is
0.001 relative change in the estimator. CURFIT
did not successfully extract the parameter values
for the large molecule at this criterion level.
Further reduction of the goodness-of-fit criterion
did not work with the large-molecule data using
CURFIT and these initial estimates. This is
because the initial estimates were too far from
the true values and the long, elliptically shaped
error surface then made convergence to the true
parameter values impossible.

The results of varying the initial estimates and
fitting the noise-free groups to Eq. 1 using a
goodness-of-fit criterion of 0.001 are shown in
Table 3. The initial estimates were important in
determining the success of parameter extraction
using Eq. 1. For these noise-free data, GRIDLS
was superior for small- and moderate-molecule
data, while CURFIT was generally unreliable.
For large-molecule data, GRIDLS gave large
errors when the initial estimate of k; was larger

than the true value. In this case, CURFIT gave
superior results to GRIDLS, provided that the
initial parameter estimates were larger than the
true values.

Corresponding results for fitting to Eq. 3 are
shown in Table 4 (Eq. 3 results from an approxi-
mation which is inappropriate for small-molecule
data). For both methods, the results were essen-
tially independent of the initial estimates, and
the percentage errors were small particularly for
the large-molecule data.

Linear regression of the noise-free data groups
on Eq. 4 gave exactly the same errors as those of
CUREFIT fitting to Eq. 3. The smaller errors
observed for the large-molecule data are con-
sistent with the assumption used in Eqs. 3 and 4.

3.4. Regression analysis of realistic data

Three hundred sets of ten gradient retention
times were generated for each § and kg pair at
each of two noise levels (0.1% and 1%). Eq. 1
was fitted to each set using both GRIDLS and
CUREFIT. The goodness-of-fit criterion was set at
0.001. The initial estimates for both parameters
were 1.0 for GRIDLS and 100 and 1 000 000 for
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Table 2

Effect of goodness-of-fit criterion on error in extracted linear solvent strength parameters for non-linear regression methods

GRIDLS and CURFIT

Goodness-of- True values Error in extracted parameter (%)
fit criterion
GRIDLS CURFIT
s Kkl s k! s k!
0.01 34 40 0.01 0.00 0.00 0.00
14.3 646 0.01 0.05 0.00 0.00
225 75858 —43.01 -97.67 —98.68 -100.00
0.001 34 4.0 0.01 0.00 0.00 0.00
143 646 0.01 0.05 0.00 0.00
225 75858 0.01 0.10 —98.68 -100.00
0.0001 34 4.0 0.01 0.00 0.00 0.00
14.3 646 0.01 0.05 0.00 0.00
225 75858 0.01 0.10 -99.89 —100.00
0.00001 22.5 75858 0.01 0.10 —-99.98 —100.00
0.0000001 22.5 75858 0.01 0.10 -99.89 -100.00

The fits were performed on noise-free data groups calculated directly from Eq. 1, as described in the text. The initial estimates of

the values of S and k|, were both 1.0.

S and k,, respectively, for CURFIT. (As men-
tioned above, CURFIT worked better when the
initial estimates were larger than the true values.)

The results in Table 5 indicate that the two
methods gave similar errors fitting to Eq. 1,
although GRIDLS was better than CURFIT in
fitting the large-molecule group. However,
GRIDLS tended to underestimate the parameter
values. This trend became more pronounced as
the parameter values increased.

Fitting in the same fashion to Eq. 3, with initial
estimates for both parameters of 1.1 for both
GRIDLS and CURFIT, gave the results shown
in Table 6. GRIDLS gave smaller ranges of error
than CURFIT for the extraction of S; otherwise,
the performance was essentially equivalent for
the two methods. Moreover, the errors fitting to
Eq. 3 were similar to the errors fitting to Eq. 1.

Table 7 shows the resuits of performing linear
regression of the 0.1% and 1% noise-level
groups (generated by Eq. 1) on Eq. 4. Again,
these results were similar to those of either of the

non-linear regression methods. The range of
error for the extraction of § by linear regression
was similar to that of GRIDLS.

Since the non-linear regression methods re-
quire initial estimates of the parameters, and the
results were found to depend on those estimates,
the linear regression results were used as initial
estimates for both non-linear regression meth-
ods. The errors in the extracted parameters using
this approach were as large as those resulting
from simply guessing the initial estimates, pro-
vided that those “quesses’” were reasonable, i.e.,
the prior use of linear regression did not sig-
nificantly improve the end result. This is proba-
bly again due to the nature of the residual
surface; starting the non-linear regression in a
region near the true values simply results in
rapidly satisfying the convergence criterion with-
out improving the results because of the shallow
“floor” of the residual surface. While this may
appear to contradict the findings in Table 1,
where the results depended on the starting val-
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Effect of initial parameter estimates on error in extracted linear solvent strength parameters for non-linear regression methods
GRIDLS and CURFIT using Eq. 1

Parameters Error in extracted parameter (%)
using non-linear regression method
True Initial
value estimate GRIDLS CURFIT
s k! S k! S k; S k!
34 4.0 1.0 1.0 0.01 0.00 0.00 0.00
100 1.0 0.01 0.00 -100 -50
1.0 1x10° 0.03 0.00 —-49 =1x10°
100 1x10° 0.03 0.00 —130 =1x10°
14.3 646 1.0 1.0 0.01 0.05 0.00 0.00
100 1.0 0.01 0.05 -100 -100
1.0 1% 10° 1.6 6.6 —-87 1.0 x 10°
100 1x10° 1.6 6.6 0.00 0.00
225 75858 1.0 1.0 0.01 0.10 -99 -100
100 1.0 0.01 0.07 -100 —-100
1.0 1x10° 28 1200 0.00 0.00
100 1x10° 28 1200 0.00 0.00

The fits were performed using noise-free data sets calculated from Eq. 1, as described in the text.

0.001.

Table 4

The goodness-of-fit criterion was

Effect of initial parameter estimates on error in extracted linear solvent strength parameters for non-linear regression methods
GRIDLS and CURFIT using Eq. 3

Parameters Error in extracted parameter (%)
using non-linear regression method
True Initial
value estimate GRIDLS CURFIT
S kg S kg S k; A k;
14.3 646 11 1.1 0.38 24 0.40 24
100 1.0 0.42 25 0.40 2.4
1.0 1x10° 0.38 24 0.40 24
100 1x10° 0.42 2.5 0.40 24
225 75858 1.1 11 -0.02 0.03 -0.02 0.04
100 1.0 -0.01 0.05 -0.02 0.04
1.0 1%x10° -0.02 0.03 -0.02 0.04
100 1%x10° -0.01 0.05 -0.02 0.04

The fits were performed using noise-free data sets calculated from Eq. 1, as described in the text. The goodness-of-fit criterion was

0.001.
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Table 5
Extraction of linear solvent strength parameters from realistic data by non-linear regression methods GRIDLS and CURFIT
using Eq. 1
True parameter Noise Average > S.D. of error (%)
value level using non-linear regression method
(%)
S k, GRIDLS CURFIT
N ko S kg

34 40 0.1 0.17+438 0.09 +0.78 052+438 013+0.78
143 646 01 07821 -2.5+83 1877 15+ 63
225 75858 0.1 -31x37 —-20+29 062+3.8 1343

34 4.0 1.0 0.96*15 034+25 22x16 05025
14.3 646 1.0 ~32+63 -80+25 6.4+16 77 +350
225 75858 1.0 -12+8S5 —45+180 3211 230 £ 1900

The fits were performed on synthetic data calculated directly from Eq. 1, as described in the text. The goodness-of-fit criterion was

0.001. The initial estimates in GRIDLS were 1.0 and 1.0, and in CURFIT were 100 and 1000000 for S and k;, respectively.

ues, those results involved starting the fitting
procedures relatively far from the true values.
It is significant that the success of the LSS
theory has been evaluated in primarily two
fashions: (i) the isocratically determined parame-
ters have been used to predict gradient retention
behavior, which has been compared to ex-
perimental results (e.g., [2]); and (ii) the LSS
parameters have been extracted from gradient
retention data and compared with the isocratical-
ly determined values (e.g., [13]). Case (i) is more
common. The shape of the residual surface
indicates that, for § > 14, fairly accurate values of

t, can be obtained with erroneous S and k;
values. In other words, the LSS mode is extreme-
ly “robust” in its ability to predict 7.

However, this “robustness’” also implies that
the accurate extraction of the true LSS parame-
ter values from gradient data is difficult. Only in
a study of the second type would this problem be
detectable. For small molecules, the values of
LSS parameters extracted from gradient data are
in good agreement with their isocratically de-
termined values (e.g., [13]). This is because there
is a relatively well defined minimum in the
residual surface. For large molecules, there is a

Table 6
Extraction of linear solvent strength parameters from realistic data by non-linear regressions methods GRIDLS and CURFIT
using Eq. 3
True parameter Noise Average + S.D. of error (%)
value level using non-linear regression method

(%)
S k; GRIDLS CURFIT

S kg ) kg

14.3 646 0.1 00923 1.6+9.6 0.57x23 37%+99
225 75858 0.1 -049+38 22+40 -0.67 £10 9.2+45
143 646 1.0 -023+74 5135 ~031x14 10+41
225 75858 1.0 -0.50+12 180 + 1300 ~047x21 330 + 2400

Thefits were performed on synthetic data calculated directly from Eq. 1, as described in the text. The goodness-of-fit criterion was
0.001. The initial estimates for both parameters were 1.1 in all cases.
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Table 7

Extraction of linear solvent strength parameters from realistic data by linear regression to Eq. 4

True parameter Noise Average + S.D.
value level of error (%)

(%)
S k¢ S k;,
14.3 646 0.1 05723 3799
225 75 858 0.1 03339 1144
143 646 1.0 13x76 13+ 40
22.5 75858 1.0 22+13 330 = 2400

The fits were performed on synthetic data calculated directly from Eq. 1, as described in the text.

larger variance in the extracted large-molecule
LSS parameters [7,13]. This larger variance is
consistent with the discussion above; extraction
of the LSS parameters is sensitive to experimen-
tal noise.

4. Conclusions

Pragmatically, the need for accurate determi-
nation of the LSS parameters from gradient data
is limited. Large molecules are typically sepa-
rated by gradient elution; the gradients run to
determine the LSS parameters serve to allow
gradient optimization directly. The LSS parame-
ter values for small molecules can be determined
directly from isocratic measurements or with
acceptable accuracy following the suggestions
given here. However, the general success of LSS
theory in predicting gradient elution behavior
indicates that any a priori theory of gradient
elution should be able to predict the LSS param-
eter values and that the accuracy of such a
prediction can be used to judge the success of
that theory. Consequently, the accurate determi-
nation of the LSS parameters for this purpose is
an important issue.

The pairwise gradient determination method is
easy to perform since it requires the fewest
chromatographic experiments and is suitable for
use in optimizing gradient elution [7,13]. How-
ever, it should be considered unreliable for the

accurate extraction of the true LSS parameter
values, as shown in this study.

Although the computation time for CURFIT
is much shorter than than for GRIDLS, these
results indicate that CURFIT was unreliable for
extracting LSS parameters from experimental
gradient retention data using Eq. 1. When appro-
priate, the use of Eq. 3 is preferred for either
CURFIT or GRIDLS, since there was virtually
no dependence on the initial estimates for Eq. 3.

For small molecules, GRIDLS and CURFIT
give essentially equivalent, reliable results.

For moderate-sized and large molecules (i.e.,
S =10), the linear regression method on Eq. 4 is
recommended. It is the simplest method and
provided comparable accuracy in the extraction
of S. Although S values considerably larger than
22 have been reported, our results suggest that
the accurate extraction of the true LSS parame-
ter values will be increasingly difficult as the
value of S increases. None of the tested methods
yielded reliable extractions of k, from realistical-
ly noisy data.
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